Sie sind hier: Startseite » Markt » Tipps und Hinweise

Datenstrategie braucht mehr als Tools


Sechs Erfolgsfaktoren, wie Unternehmen Mehrwert aus Kundendaten ziehen
Am Anfang einer Datenstrategie gilt es, alle externen und internen Datensilos und Quellen zu identifizieren, die im engeren und weiteren Sinne Relevanz für die Geschäftsprozesse entfalten


Die Menschheit produziert 2,5 Trillionen Bytes pro Tag. In den letzten zwei Jahren wurden mehr Daten gesammelt, als in der gesamten Menschheitsgeschichte zusammen. Für jeden Menschen entstehen pro Sekunde 1,7 Megabyte neue Rohinformationen. Kurzum: Die Datenflut ist unaufhaltsam. Wobei diese Datenflut nicht automatisch bedeutet, dass daraus auch Wissen entsteht. Daten und Informationen an sich haben zunächst keinen Wert. Sie sind wie Rohdiamanten, die erst durch ihre Verarbeitung Brillanz gewinnen. Auch für Unternehmen entfalten Kundendaten erst ihren Wert, wenn sie ausgewertet einen Erkenntnisgewinn liefern, der zu neuen Handlungsoptionen führt. Das bedeutet, dass Unternehmen eine Datenstrategie brauchen, die ihre Geschäftsprozesse fundiert und leitet.

Auch wenn heute viele Unternehmen glauben, sie würden ihre selbst gesammelten Kundendaten mit den vorhandenen Tools angemessen auswerten, entsteht dadurch noch keine zeitgemäße Datenstrategie. Vielmehr brauchen Management und Fachabteilungen eine umfassende Analyse, über welche Daten sie bereits verfügen und welche sie darüber hinaus benötigen, um alle Aspekte zu ihrem Markt, ihrem Wettbewerb und ihren Kunden abzudecken. Sie brauchen ein Datenmodell, welche Daten in welcher Kombination geeignet sind, um ihre Geschäftsprozesse optimal zu unterstützen und Mehrwert daraus zu generieren.

dunnhumby, einer der weltweit führenden Anbieter von Datenanalysen für den Handel, hat sechs Erfolgsfaktoren identifiziert, wie Unternehmen Mehrwert aus ihren Kundendaten ziehen können:

1. Die richtigen Daten und Quellen identifizieren
Am Anfang einer Datenstrategie gilt es, alle externen und internen Datensilos und Quellen zu identifizieren, die im engeren und weiteren Sinne Relevanz für die Geschäftsprozesse entfalten. Welche Daten benötigen Management und Fachabteilungen, um Key Performance Indicators (KPI) aufzustellen, mit denen sie ihre Erfolge messen können? Und welche KPIs benötigen sie, um ihre Entscheidungsprozesse zu fundieren und neue Geschäftsprozesse zu etablieren?

2. DSGVO-konforme Data Governance definieren
Für die Zusammenführung und Auswertung von Daten sollten Unternehmen Richtlinien und Prozesse definieren, die die Datenschutzgrundverordnung beachten. Für das Vertrauen der Kunden ist es erforderlich, die Datensicherheit über die komplette Prozesskette zu gewährleisten. Alle Mitarbeiter sollten durch Schulungen auf die Data Governance verpflichtet werden.

3. Datenarchitektur entwickeln
Für die Auswertung verschiedener Datenquellen brauchen Unternehmen eine Dokumentation, wo und wie Daten gespeichert, integriert und genutzt werden. Es gilt, einen "Single Point of Truth" zu schaffen, damit alle Datenquellen stets aktuell, valide und konsistent sind, um sie für die regelmäßige Zusammenführung und Auswertung bereitzustellen.

4. Eigene Datensilos und externe Datenquellen integriert analysieren
Eigene Kundendaten liegen oft verstreut in isolierten Datensilos. Diese gilt es zusammenzuführen und mit externen Datenquellen für die Auswertung zu verbinden. Zum besseren Verständnis von Kundenbedürfnissen sind alle Kanäle zu integrieren und in einer technisch innovativen sowie rechtlich zulässigen Weise aufzubereiten.

5. Personelle Ressourcen für Umsetzung der Datenstrategie bereitstellen
Noch wichtiger als die Entwicklung einer Datenstrategie ist für Unternehmen die Schaffung der personellen Grundlagen für die Umsetzung. Kompetenzprofile, Qualifikationen und Zusammensetzung der Teams sowie ihre Arbeitsstrukturen müssen passen, um für Management und Fachabteilungen aus den Daten die richtigen Analysen liefern zu können.

6. Geschäftsprozesse für die Daten-Monetarisierung etablieren
Denn es gilt nach der Umsetzung der Datenstrategie, Analysen zu liefern, die neue Geschäftsprozesse ermöglichen. Durch die Auswertung von Marketing- und Vertriebsmaßnahmen entstehen idealerweise neue Monetarisierungs-Ansätze, die ohne die Datenstrategie bisher nicht identifizierbar waren.

Regelmäßiger Data Healthcheck für die Weiterentwicklung der Datenstrategie
Um aus Kundendaten Mehrwert zu generieren, sind diese sechs Erfolgsfaktoren aber nur der Anfang. "Eine erfolgreiche Datenstrategie benötigt eine kontinuierliche Überprüfung und Verbesserung. Ein regelmäßiger Data Healthcheck zur Optimierung der Prozesse minimiert das Risiko und maximiert den Nutzen der Datenanalyse", resümiert Jurgen van Leeuwen, Director dunnhumby Germany. Denn nur mit einer soliden Datenstrategie können Unternehmen mehr aus ihren Daten herausholen und Wertschöpfung generieren, ihr Verständnis für ihre Kunden verbessern und eine messbare Wertsteigerung für ihr Unternehmen realisieren.
(dunnhumby: ra)

eingetragen: 19.12.18
Newsletterlauf: 13.02.19

dunnhumby: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen