Sie sind hier: Startseite » Markt » Tipps und Hinweise

Angst vor einem "Lock-in"


Container und Cloud: Wie sich "Lock-in-Effekte" vermeiden lassen
Container sollen "Lock-ins" vermeiden – aber können sie das?


Von Patrick Callaghan ist Solutions Architect bei DataStax

Die Wahl der richtigen Plattform für Unternehmensapplikationen mag auf den ersten Blick nebensächlich erscheinen, dabei hat sie immensen Einfluss auf alle folgenden Entscheidungen im Hinblick auf die Entwicklungsumgebung. Denn fällt die Wahl auf den falschen Cloud Computing-Anbieter, das falsche Betriebssystem oder die falsche Programmiersprache kann das im Nachhinein bei Mitarbeitern zu Unzufriedenheit und Zähneknirschen führen und durch erhöhten Personalaufwand richtig teuer werden.

Um das zu vermeiden, geht der Trend in Entwicklungsteams immer mehr zu (Software-)Containern und Microservices. Indem sie Fremdmaterial entfernen und die Größe der Images auf das erforderliche Maß reduzieren, erleichtern es Container, Software zielgerichtet einzusetzen. Und diese Konzentration auf das Wesentliche steigert die Produktivität von Entwicklern enorm. Eine Umfrage von 451 Research hat das jüngst noch einmal eindrucksvoll belegt: Rund 57 Prozent der befragten Unternehmen nannten die Produktivität der Entwickler als einen entscheidenden Grund für ihren Wechsel zu Containern.

Container sind ideal für den Einsatz von Microservices. Diese zerlegen Anwendungen in kleinere Komponenten, die alle ihre eigene Rolle innerhalb der Applikation einnehmen. Die Aufteilung in kleinere Bausteine macht die Anwendungen deutlich skalierbarer – nach oben oder nach unten. Somit ist die Kombination aus Containern und Microservices vor allem unerlässlich, wenn Unternehmen extrem schnell auf Nachfragespitzen reagieren wollen – um so die Erwartungen der Kunden an Services in Echtzeit zu erfüllen.

Cloud-Strategie mit Containern
Neben diesem Trend im Development verändert sich auch die Rolle der Infrastruktur. Denn um mit dem steigenden Nachfrageniveau auch IT-seitig mitzuhalten, setzen immer mehr Unternehmen auf Hybrid- oder Multi-Cloud-Strategien. Das bestätigen auch Studien: Gartner schätzte, dass bis 2019 rund 70 Prozent aller Unternehmen auf Multi-Cloud-Strategien umsteigen – im Vergleich dazu lag dieser Anteil im Jahr 2016 bei lediglich 10 Prozent. Das Marktforschungsinstitut Forrester Consulting stellte für das vergangene Jahr einen ähnlichen Trend fest, nämlich, dass 2018 bereits rund 60 Prozent der Unternehmen die Public Cloud für Produktionsanwendungen nutzten – wobei als Hauptgründe der Studie zufolge die positiven Auswirkungen auf die Geschäftsleistung und die betriebliche Effizienz genannt wurden. Den schnellen Wandel treiben nicht zuletzt die Entwickler voran, wünschen sie sich doch mehr Flexibilität bei der Ausführung und Bereitstellung von Anwendungen.

Ein weiterer Grund für den Wechsel auf Hybrid- oder Multi-Cloud-Umgebungen ist die Angst vor einem "Lock-in". Denn auch wenn die Services aus der Public Cloud eine enorme Rechen- oder Speicherverfügbarkeit aufweisen, ist es riskant, alles auf eine Karte zu setzen. Nutzt man beispielsweise einen speziellen Service eines Anbieters umfänglich, muss man sich der negativen Folgen im Klaren sein, die eine Änderung oder gar der Wegfall dieses Angebots mit sich bringen. Ein schneller Umzug des gesamten Datenbestands ist so kaum möglich. Die Folge: Der Kunde ist eingeschlossen.

Container sollen diesen "Lock-in-Effekt" vermeiden: Reduziert auf die wesentlichen Elemente und unabhängig von der zugrunde liegenden Hardware und Plattform kann ein Container-Image prinzipiell auf jedem Cloud-Service ausgeführt werden. Dies war auch einer der Gründe für das Wachstum von Kubernetes, der Management- und Orchestrierungsplattform für Container auf Open-Source-Basis. Da Kubernetes die Bedienung und Verwaltung nach und nach vereinfacht hat, lassen sich Container heute effizient und skalierbar betreiben. Noch wichtiger ist, dass mehrere Public Clouds Kubernetes unterstützen und auch Managed Kubernetes Services anbieten. Das erleichtert den Umzug, wenn ein Plattformwechsel ansteht.

Der "Lock-in" droht weiterhin
Allein mit Containern entkommt der Nutzer dem "Lock-in" allerdings nicht. Denn Container sind in der Regel "stateless", sie werden nicht zur Speicherung oder Analyse von Daten verwendet. Sind Anwendungen in Betrieb, generieren diese im Laufe der Zeit aber Daten, die gespeichert und verwaltet werden müssen.

Um mit den Anwendungen autonom zu bleiben, müssen Container und Daten gemeinsam betrachtet werden. Denn sind beispielsweise die Container portabel, die Daten aber nicht, läuft die Anwendung nur bei einem Anbieter. Um diese Abhängigkeiten zu vermeiden, ist es daher wichtig, sich genau anzusehen, welche Anforderungen an Datenmanagement, -speicherung und -analyse gestellt werden. Werden die Daten aus der Anwendung analysiert und wenn ja, in welchem zeitlichen Abstand zur Generierung der Daten? Geht es darum, Trends über einen Zeitraum zu betrachten oder muss man zeitnah analytische Entscheidungen treffen? Für die meisten Anwendungen gilt Zweiteres. Gerade für E-Commerce- und Handelsunternehmen müssen Schritte wie Personalisierung oder Produktempfehlungen so zeitnah wie möglich nach einer Kundenaktion erfolgen, um eine Erfolgschance zu haben.

Die Datenanalyse wiederum kann auf verschiedenen Arten der Datenspeicherung basieren. Relationale, NoSQL- und Graph-Datenbanken setzen alle auf unterschiedliche Methoden, um die wichtigen Informationen aus den Datenmassen herauszufiltern, die von Anwendungen generiert werden. Bei all diesen verfügbaren Möglichkeiten lohnt es sich, vorab zu prüfen, ob und wie die unterschiedlichen Datenbanken und -modelle neben containerbasierten Anwendungen integriert werden oder als eigenständige Container fungieren können.

Natürlich bieten Public-Cloud-Dienste spezifische Funktionen für die Datenspeicherung oder -analyse. Werden diese genutzt, begibt man sich für diese Zeit in Abhängigkeit, unabhängig davon, ob Container im Einsatz sind oder nicht. Dieser "Lock-in-Effekt" ließe sich mit einem Data Layer umgehen, der über mehrere Standorte und Cloud-Anbieter hinweg funktioniert – so wie es Container tun. Ein solcher, von der Cloud unabhängiger Ansatz ermöglicht es Unternehmen, bei Bedarf zwischen den eigenen Rechenzentren und einem Public-Cloud-Anbieter zu wechseln oder verschiedene Public-Cloud-Services gleichzeitig zu nutzen.

Unabhängig mit Containern und der richtigen Datenstrategie
Container bieten eine gute Möglichkeit, skalierbare Anwendungen bereitzustellen, die schneller und effizienter auf die Benutzeranforderungen reagieren können als herkömmliche Infrastrukturen. Sie allein verhindern allerdings noch keinen "Lock-in". Dafür ist es vielmehr erforderlich, auch die Anforderungen der Anwendung an Datenmanagement, -analyse und Storage-Umgebung zu prüfen.

Denn wirklich autonom ist ein Unternehmen nur mit einer möglichst umfassenden und durchdachten Datenstrategie. Durch vorausschauende Planung können Entwickler beeinflussen, wie gut ihr Unternehmen neue Cloud-Strategien umsetzt, um Datenautonomie zu gewährleisten und "Lock-ins" zu vermeiden. Ein positiver Nebeneffekt: Die Bedürfnisse der sogenannten "Right Now Economy" erfüllen sie so gleich mit. (DataStax: ra)

eingetragen: 15.03.19
Newsletterlauf: 25.03.19

DataStax: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen